

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4731

Mechanics 4

Specimen Paper

Additional materials: Answer booklet Graph paper List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use 9.8 m s^{-2} .
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

- 1 A circular flywheel of radius 0.2 m is rotating freely about a fixed axis through its centre and perpendicular to its plane. The moment of inertia of the flywheel about the axis is 0.37 kg m^2 . When the angular speed of the flywheel is 8 rad s^{-1} a particle of mass 0.75 kg, initially at rest, sticks to a point on the circumference of the flywheel. Find
 - (i) the angular speed of the flywheel immediately after the particle has stuck to it, [4]
 - (ii) the loss of energy that results when the particle sticks to the flywheel. [2]
- 2 A uniform solid sphere, of mass 4 kg and radius 0.1 m, is rotating freely about a fixed axis with angular speed 20 rad s⁻¹. The axis is a diameter of the sphere. A couple, having constant moment 0.36 N m about the axis and acting in the direction of rotation, is then applied for 6 seconds. For this time interval, find
 - (i) the angular acceleration of the sphere,[3](ii) the angle through which the sphere turns,[2]

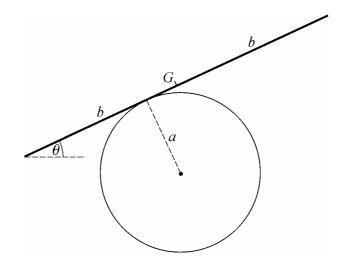
[2]

[3]

- (iii) the work done by the couple.
- 3 The region bounded by the x-axis, the y-axis, and the curve $y=4-x^2$ for $0 \le x \le 2$, is occupied by a uniform lamina of mass 35 kg. The unit of length is the metre. Show that the moment of inertia of the lamina about the y-axis is 28 kg m². [8]
- 4 A straight rod *AB* of length *a* has variable density, and at a distance *x* from *A* its mass per unit length is $k\left(1+\frac{x^2}{a^2}\right)$, where *k* is a constant.
 - (i) Find the distance of the centre of mass of the rod from *A*. [6]

You are given that the moment of inertia of the rod about a perpendicular axis through A is $\frac{8}{15}ka^3$.

- (ii) Show that the period of oscillation of the rod as a compound pendulum, when freely pivoted at the other end *B*, is $2\pi \sqrt{\frac{22a}{35g}}$. [5]
- 5 A uniform rod *AB*, of mass *m* and length 2a, is free to rotate in a vertical plane about a fixed horizontal axis through *A*. The rod is released from rest with *AB* horizontal. Air resistance may be neglected. For the instant when the rod has rotated through an angle $\frac{1}{6}\pi$,
 - (i) show that the angular acceleration of the rod is $\frac{(3\sqrt{3})g}{8a}$, [2]
 - (ii) find the angular speed of the rod,
 - (iii) show that the force acting on the rod at A has magnitude $\frac{\sqrt{103}}{8}mg$. [7]



A cylinder with radius *a* is fixed with its axis horizontal. A uniform rod, of mass *m* and length 2*b*, moves in a vertical plane perpendicular to the axis of the cylinder, maintaining contact with the cylinder and not slipping (see diagram). When the rod is horizontal, its mid-point *G* is in contact with the cylinder. You are given that, when the rod makes an angle θ with the horizontal, the height of *G* above the axis of the cylinder is $a(\theta \sin \theta + \cos \theta)$.

- (i) By considering the potential energy of the rod, show that $\theta = 0$ is a position of stable equilibrium. [6]
- (ii) You are also given that, when θ is small, the kinetic energy of the rod is approximately $\frac{1}{6}mb^2\dot{\theta}^2$. Show that the approximate period of small oscillations about the position $\theta = 0$ is $\frac{2\pi b}{\sqrt{(3ga)}}$. [7]
- 7 An unidentified object U is flying horizontally due east at a constant speed of 220 m s⁻¹. An aircraft is 15 000 m from U and is at the same height as U. The bearing of U from the aircraft is 310° .
 - (i) Assume that the aircraft flies in a straight line at a constant speed of 160 m s⁻¹.
 - (a) Find the bearings of the two possible directions in which the aircraft can fly to intercept U. [6]
 - (b) Given that the interception occurs in the shorter of the two possible times, find the time taken to make the interception. [5]
 - (ii) Assuming instead that the aircraft flies in a straight line at a constant speed of 130 m s^{-1} , show that the nearest the aircraft can come to U is approximately 988 m. [4]

1 (i) (ii)	MI with particle is $0.37 + 0.75 \times 0.2^2 = 0.4$ $0.4\omega = 0.37 \times 8$ Hence angular speed is 7.4 rad s ⁻¹ K.E. loss $\frac{1}{2} \times 0.37 \times 8^2 - \frac{1}{2} \times 0.4 \times 7.4^2 = 0.888$ J	M1 A1 M1 A1 M1 A1√		For 0.75×0.2^2 For correct MI, stated or implied For relevant use of cons. of ang. mom. For correct value 7.4 For an correct relevant use of $\frac{1}{2}I\omega^2$ For correct value for the KE loss
2 (i) (ii) (iii)	$0.36 = 0.016\alpha$ Hence angular acceleration is 22.5 rad s ⁻² $\theta = 20 \times 6 + \frac{1}{2} \times 22.5 \times 6^2$ Angle turned through is 525 radians	B1 M1 A1 M1 A1√ M1 A1√	2	For correct use of $\frac{2}{5}mr^2$ For use of $C = I\alpha$ to find α For correct value 22.5 For use of $\theta = \omega_0 t + \frac{1}{2}\alpha t^2$ to find θ For correct answer 525 For use of $C\theta$, or increase in $\frac{1}{2}I\omega^2$ For correct answer 189
3 EIT	<i>HER</i> : Area is $\int_{0}^{2} (4 - x^{2}) dx = \left[4x - \frac{1}{3}x^{3} \right]_{0}^{2} = \frac{16}{3}$ Hence $\frac{16}{3}\rho = 35 \Rightarrow \rho = \frac{105}{16}$ $I = \int_{0}^{2} \rho x^{2} y dx = \frac{105}{16} \int_{0}^{2} x^{2} (4 - x^{2}) dx$ $= \frac{105}{16} \left[\frac{4}{3}x^{3} - \frac{1}{5}x^{5} \right]_{0}^{2} = \frac{105}{16} \times \frac{64}{15} = 28$ Area is $\int_{0}^{4} (4 - y)^{\frac{1}{2}} dy = \left[-\frac{2}{3} (4 - y)^{\frac{3}{2}} \right]_{0}^{4} = \frac{16}{3}$ Hence $\frac{16}{3}\rho = 35 \Rightarrow \rho = \frac{105}{16}$ $I = \frac{1}{3}\rho \int_{0}^{4} x^{3} dy = \frac{35}{16} \int_{0}^{4} (4 - y)^{\frac{3}{2}} dy$ $= \frac{35}{16} \left[-\frac{2}{5} (4 - y)^{\frac{5}{2}} \right]_{0}^{4} = \frac{35}{16} \times \frac{64}{5} = 28$	M1 A1 B1 \checkmark M1 A1 \checkmark A1 A1 \checkmark A1 M1 A1 \checkmark M1 A1 \checkmark A1 A1 \checkmark A1	8	For evaluation of $\int_{0}^{2} y dx$ For correct value $\frac{16}{3}$ For correct density For use of $\int x^2 y dx$ For correct expression for <i>I</i> For correct indefinite integral $\frac{4}{3}x^3 - \frac{1}{5}x^5$ For correct numerical expression $\frac{64}{15}\rho$ For obtaining given answer 28 correctly For evaluation of $\int_{0}^{4} x dy$ For correct value $\frac{16}{3}$ For correct density For use of $\frac{1}{3}\int x^3 dy$ For correct indefinite integral $-\frac{2}{5}(4-y)^{\frac{5}{2}}$ For correct numerical expression $\frac{1}{3}\rho \times \frac{64}{5}$ For obtaining given answer 28 correctly

4	(i)	Moment @ $A = \int_{0}^{a} kx \left(1 + \frac{x^{2}}{a^{2}}\right) dx = k \left[\frac{x^{2}}{2} + \frac{x^{4}}{4a^{2}}\right]_{0}^{a}$	M1		For attempted integration of ρx with limits
		$=\frac{3}{4}ka^2$	A1		For correct MI $\frac{3}{4}ka^2$
		Mass of rod is $\int_{0}^{a} k \left(1 + \frac{x^2}{a^2} \right) dx = k \left[x + \frac{x^3}{3a^2} \right]_{0}^{a}$	M1		For attempted integration of ρ with limits
		$=\frac{4}{3}ka$	A1		For correct mass $\frac{4}{3}ka$
		Hence $\frac{4}{3}ka\overline{x} = \frac{3}{4}ka^2 \Longrightarrow \overline{x} = \frac{9}{16}a$	M1		For moments equation for \overline{x}
			A1	6	For correct answer $\frac{9}{16}a$
	(ii)	$I_G = I_A - m(\overline{x})^2 = \frac{8}{15}ka^3 - \frac{4}{3}ka\left(\frac{9}{16}a\right)^2 = \frac{107}{960}ka^3$	B1		For stating correct relation $I_G = I_A - m(\bar{x})^2$
		$I_B = I_G + m(a - \overline{x})^2 = \frac{107}{960}ka^3 + \frac{4}{3}ka\left(\frac{7}{16}a\right)^2 = \frac{11}{30}ka^3$	M1		For correct use of \parallel axes to find I_B
			A1		For correct value $\frac{11}{30}ka^3$, or equivalent
		Period is $2\pi \sqrt{\frac{\frac{11}{30}ka^3}{(\frac{4}{2}ka)g(\frac{7}{16}a)}} = 2\pi \sqrt{\frac{22a}{35g}}$	M1		For correct use of $2\pi \sqrt{\frac{I}{mgh}}$
			A1	5	For showing given answer correctly
				11	
5	(i)	$mga\cos\frac{1}{6}\pi = \frac{4}{3}ma^2\alpha$	M1		For use of $C = I_A \alpha$
		Hence $\alpha = \frac{(3\sqrt{3})g}{8a}$	A1	2	For obtaining given answer correctly
	(ii)	$\frac{1}{2} \times \frac{4}{3}ma^2 \times \omega^2 = mga\sin\frac{1}{6}\pi$	M1		For relevant use of conservation of energy
			A1		For correct equation
		Hence $\omega = \sqrt{\left(\frac{3g}{4a}\right)}$	A1	3	For correct answer
	(iii)	Res rod: $R - mg\sin\frac{1}{6}\pi = ma\omega^2$	M1		For Newton II equation with 3 terms
		Hence $R = \frac{1}{2}mg + \frac{3}{4}mg = \frac{5}{4}mg$	A1√		For correct component
		Res \perp rod: $mg\cos\frac{1}{6}\pi - S = ma\alpha$	M1		For Newton II equation with 3 terms
		Hence $S = (1/2)mc = (3/2)mc = (1/2)mc$	A1		For correct equation
		Hence $S = \left(\frac{1}{2}\sqrt{3}\right)mg - \left(\frac{3}{8}\sqrt{3}\right)mg = \left(\frac{1}{8}\sqrt{3}\right)mg$	A1		For correct component
		Magnitude is $\sqrt{(R^2 + S^2)} = \frac{1}{8}mg\sqrt{(10^2 + 3)}$	M1		For correct method for resultant
		$=\frac{\sqrt{103}}{8}mg$	A1	7	For obtaining given answer correctly
		8			
		8			
		8			
		8		12	
		8		12	
		8		12	
		8		12	

6	(i)	$V = mga(\theta \sin \theta + \cos \theta)$, so			
		$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(\theta\cos\theta + \sin\theta - \sin\theta) = mga\theta\cos\theta$	M1		For differentiation using product rule
		$\mathrm{d} heta$	A1		For correct derivative
		Hence equilibrium at $\theta = 0$, since $\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0$	A1		For showing the given result correctly
		$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = mga(\cos\theta - \theta\sin\theta)$	M1		For differentiating again using product rule
		-2	A1		For correct second derivative
		When $\theta = 0$, $\frac{d^2 V}{d\theta^2} = mga > 0$, so equin is stable	A1	6	For showing the given result correctly
	(ii)	$mga(\theta\sin\theta + \cos\theta) + \frac{1}{6}mb^2\dot{\theta}^2 = K$	B1		For correct statement of energy equation
		Hence $(mga\theta\cos\theta)\dot{\theta} + \frac{1}{3}mb^2\dot{\theta}\ddot{\theta} = 0$	M1		For attempt to differentiate w.r.t. t
			A1√ A1		For correct derivative of PE term For correct derivative of KE term
		For small θ , $mga\theta + \frac{1}{3}mb^2\ddot{\theta} \approx 0 \Rightarrow \ddot{\theta} \approx -\frac{3ga}{b^2}\theta$	M1		For use of $\cos\theta \approx 1$ and simplifying
		Motion is approximate SHM with period $\frac{2\pi b}{\sqrt{(3ga)}}$	M1		For use of $\frac{2\pi}{\omega}$ from standard SHM form
			A1	7	For showing the given answer correctly
				13	
7	(i)	(a) θ v v ϕ 160 160 220 40°	B1 B1		For correct triangle for at least one case For both triangle (together or separately)
		$\frac{\sin\theta}{220} = \frac{\sin 40^\circ}{160}$	M1		For a method for finding a relevant angle
		Hence $\theta = 62.1^{\circ}, \ \phi = 117.9^{\circ}$	A1		For either angle correct
		Required bearings are 012.1° and 067.9°	A1 A1	6	For one correct bearing
		(b) Shorter time occurs for $\theta = 62.1^{\circ}$	B1√		For the other correct bearing For selecting the appropriate case
		$\frac{v}{\sin 77.9^\circ} = \frac{160}{\sin 40^\circ} \Rightarrow v = 243.4$	M1		For finding the relative speed, or equivalent
		$\sin 77.9^\circ$ $\sin 40^\circ$	A1		For correct value 243.4
		Hence time is $\frac{15000}{243.4} = 61.6 \text{ s}$	M1		For calculation of the time taken
		243.4	A1√	5	For correct value 61.6
	(ii)	For closest approach, $\sin \alpha = \frac{130}{220} \Rightarrow \alpha = 36.2^{\circ}$	M1		For use of correct velocity triangle
		Hence min distance is $15000\sin(40-\alpha) \approx 988$ m	A1 M1 A1	4	For correct angle For use of correct displacement triangle For showing given answer correctly
				15	